The Theory States That the Universe is Continually Growing

Model of the evolution of the universe

In the Big Bang, the expanding Universe causes matter to dilute over time, while in the Steady-State Theory, continued matter creation ensures that the density remains constant over time.

In cosmology, the steady-state model is an alternative to the Big Bang theory of evolution of the universe. In the steady-state model, the density of matter in the expanding universe remains unchanged due to a continuous creation of matter, thus adhering to the perfect cosmological principle, a principle that asserts that the observable universe is practically the same at any time and any place.

While the steady-state model enjoyed some minority[ citation needed ] support in the scientific mainstream until the mid-20th century, it is now rejected by the vast majority of cosmologists, astrophysicists and astronomers, as the observational evidence points to a hot Big Bang cosmology with a finite age of the universe, which the steady-state model does not predict.[1] [2]

History [edit]

In the 13th century, Siger of Brabant authored the thesis The Eternity of the World, which argued that there was no first man, and no first specimen of any particular: the physical universe is thus without any first beginning, and therefore eternal. Siger's views were condemned by the pope in 1277.

Cosmological expansion was originally discovered through observations by Edwin Hubble. Theoretical calculations also showed that the static universe as modeled by Einstein (1917) was unstable. The modern Big Bang theory, first advanced by Father Georges Lemaître, is one in which the universe has a finite age and has evolved over time through cooling, expansion, and the formation of structures through gravitational collapse.

The steady-state model asserts that although the universe is expanding, it nevertheless does not change its appearance over time (the perfect cosmological principle); the universe has no beginning and no end. This required that matter be continually created in order to keep the universe's density from decreasing. Influential papers on steady-state cosmologies were published by Hermann Bondi, Thomas Gold, and Fred Hoyle in 1948.[3] [4] Similar models had been proposed earlier by William Duncan MacMillan, among others.[5]

It is now known that Albert Einstein considered a steady-state model of the expanding universe, as indicated in a 1931 manuscript, many years before Hoyle, Bondi and Gold. However, he quickly abandoned the idea.[6]

Observational tests [edit]

Counts of radio sources [edit]

Problems with the steady-state model began to emerge in the 1950s and 60s, when observations began to support the idea that the universe was in fact changing: bright radio sources (quasars and radio galaxies) were found only at large distances (therefore could have existed only in the distant past due to the effects of the speed of light on astronomy), not in closer galaxies. Whereas the Big Bang theory predicted as much, the steady-state model predicted that such objects would be found throughout the universe, including close to our own galaxy. By 1961, statistical tests based on radio-source surveys[7] had ruled out the steady-state model in the minds of most cosmologists, although some proponents of the steady state insisted that the radio data were suspect.

Cosmic microwave background [edit]

For most cosmologists, the definitive refutation of the steady-state model came with the discovery of the cosmic microwave background radiation in 1964, which was predicted by the Big Bang theory. The steady-state model explained microwave background radiation as the result of light from ancient stars that has been scattered by galactic dust. However, the cosmic microwave background level is very even in all directions, making it difficult to explain how it could be generated by numerous point sources, and the microwave background radiation shows no evidence of characteristics such as polarization that are normally associated with scattering. Furthermore, its spectrum is so close to that of an ideal black body that it could hardly be formed by the superposition of contributions from a multitude of dust clumps at different temperatures as well as at different redshifts. Steven Weinberg wrote in 1972,

The steady state model does not appear to agree with the observed dL versus z relation or with source counts ... In a sense, this disagreement is a credit to the model; alone among all cosmologies, the steady state model makes such definite predictions that it can be disproved even with the limited observational evidence at our disposal. The steady state model is so attractive that many of its adherents still retain hope that the evidence against it will eventually disappear as observations improve. However, if the cosmic microwave radiation ... is really black-body radiation, it will be difficult to doubt that the universe has evolved from a hotter denser early stage.[8]

Since this discovery, the Big Bang theory has been considered to provide the best explanation of the origin of the universe. In most astrophysical publications, the Big Bang is implicitly accepted and is used as the basis of more complete theories.

Violations of the cosmological principle [edit]

One of the fundamental assumptions of the steady-state model is the cosmological principle, which follows from the perfect cosmological principle and which states that our observational location in the universe is not unusual or special; on a large-enough scale, the universe looks the same in all directions (isotropy) and from every location (homogeneity).[9] However, recent findings have suggested that violations of the cosmological principle, especially of isotropy, exist, with some authors suggesting that the cosmological principle is now obsolete.[10] [11] [12] [13]

Violations of isotropy [edit]

Evidence from galaxy clusters,[14] [15] quasars,[16] and type Ia supernovae[17] suggest that isotropy is violated on large scales.

Data from the Planck Mission shows hemispheric bias in the cosmic microwave background in 2 respects: one with respect to average temperature (i.e. temperature fluctuations), the second with respect to larger variations in the degree of perturbations (i.e. densities). The European Space Agency (the governing body of the Planck Mission) has concluded that these anisotropies in the CMB are, in fact, statistically significant and can no longer be ignored.[18]

Already in 1967, Dennis Sciama predicted that the cosmic microwave background has a significant dipole anisotropy.[19] [20] In recent years the CMB dipole has been tested and current results suggest our motion with respect to distant radio galaxies [21] and quasars [22] differs from our motion with respect to the cosmic microwave background. The same conclusion has been reached in recent studies of the Hubble diagram of Type Ia supernovae[23] and quasars.[24] This contradicts the cosmological principle.

The CMB dipole is hinted at through a number of other observations. First, even within the cosmic microwave background, there are curious directional alignments [25] and an anomalous parity asymmetry [26] that may have an origin in the CMB dipole.[27] Separately, the CMB dipole direction has emerged as a preferred direction in studies of alignments in quasar polarizations,[28] scaling relations in galaxy clusters,[29] [30] strong lensing time delay,[11] Type Ia supernovae,[31] and quasars & gamma-ray bursts as standard candles.[32] The fact that all these independent observables, based on different physics, are tracking the CMB dipole direction suggests that the Universe is anisotropic in the direction of the CMB dipole.

Nevertheless, some authors have stated that the universe around Earth is isotropic at high significance by studies of the cosmic microwave background temperature maps.[33]

Violations of homogeneity [edit]

Many large-scale structures have been discovered, and some authors have reported some of the structures to be in conflict with the homogeneity condition required for the cosmological principle, including

  • The Clowes–Campusano LQG, discovered in 1991, which has a length of 580 Mpc
  • The Sloan Great Wall, discovered in 2003, which has a length of 423 Mpc,[34]
  • U1.11, a large quasar group discovered in 2011, which has a length of 780 Mpc
  • The Huge-LQG, discovered in 2012, which is three times longer than and twice as wide as is predicted possible according to ΛCDM
  • The Hercules–Corona Borealis Great Wall, discovered in November 2013, which has a length of 2000–3000 Mpc (more than seven times that of the SGW)[35]
  • The Giant Arc, discovered in June 2021, which has a length of 1000 Mpc[36]

Other authors claim that the existence of large-scale structures does not necessarily violate the cosmological principle.[37] [10]

Quasi-steady state [edit]

Quasi-steady-state cosmology (QSS) was proposed in 1993 by Fred Hoyle, Geoffrey Burbidge, and Jayant V. Narlikar as a new incarnation of the steady-state ideas meant to explain additional features unaccounted for in the initial proposal. The model suggests pockets of creation occurring over time within the universe, sometimes referred to as minibangs, mini-creation events, or little bangs.[38] After the observation of an accelerating universe, further modifications of the model were made.[39] The Planck particle is a hypothetical black hole whose Schwarzschild radius is approximately the same as its Compton wavelength; the evaporation of such a particle has been evoked as the source of light elements in an expanding steady-state universe.[40]

Astrophysicist and cosmologist Ned Wright has pointed out flaws in the model.[41] These first comments were soon rebutted by the proponents.[42] Wright and other mainstream cosmologists reviewing QSS have pointed out new flaws and discrepancies with observations left unexplained by proponents.[43]

See also [edit]

  • Non-standard cosmology
  • Background independence
  • Copernican principle
  • End of Greatness
  • Large scale structure of the cosmos
  • Metric expansion of space

Notes and citations [edit]

  1. ^ "Steady State theory". BBC . Retrieved January 11, 2015. [T]he Steady State theorists' ideas are largely discredited today...
  2. ^ Kragh, Helge (1999). Cosmology and Controversy: The Historical Development of Two Theories of the Universe. Princeton University Press. ISBN978-0-691-02623-7.
  3. ^ Bondi, Hermann; Gold, Thomas (1948). "The Steady-State Theory of the Expanding Universe". Monthly Notices of the Royal Astronomical Society. 108 (3): 252. Bibcode:1948MNRAS.108..252B. doi:10.1093/mnras/108.3.252.
  4. ^ Hoyle, Fred (1948). "A New Model for the Expanding Universe". Monthly Notices of the Royal Astronomical Society. 108 (5): 372. Bibcode:1948MNRAS.108..372H. doi:10.1093/mnras/108.5.372.
  5. ^ Kragh, Helge (2019). "Steady-State theory and the cosmological controversy". In Kragh, Helge (ed.). The Oxford handbook of the history of modern cosmology. pp. 161–205. doi:10.1093/oxfordhb/9780198817666.013.5. ISBN978-0-19-881766-6. the Chicago astronomer William MacMillan not only assumed that stars and galaxies were distributed uniformly throughout infinite space, he also denied 'that the universe as a whole has ever been or ever will be essentially different from what it is today.'
  6. ^ Castelvecchi, Davide (2014). "Einstein's lost theory uncovered". Nature. 506 (7489): 418–419. Bibcode:2014Natur.506..418C. doi:10.1038/506418a. PMID 24572403.
  7. ^ Ryle and Clarke, "An examination of the steady-state model in the light of some recent observations of radio sources," MNRAW 122 (1961) 349
  8. ^ Weinberg, S. (1972). Gravitation and Cosmology . John Whitney & Sons. pp. 495–464. ISBN978-0-471-92567-5.
  9. ^ Andrew Liddle. An Introduction to Modern Cosmology (2nd ed.). London: Wiley, 2003.
  10. ^ a b Elcio Abdalla; Guillermo Franco Abellán; et al. (11 Mar 2022), Cosmology Intertwined: A Review of the Particle Physics, Astrophysics, and Cosmology Associated with the Cosmological Tensions and Anomalies, arXiv:2203.06142v1
  11. ^ a b Krishnan, Chethan; Mohayaee, Roya; Colgáin, Eoin Ó; Sheikh-Jabbari, M. M.; Yin, Lu (16 September 2021). "Does Hubble Tension Signal a Breakdown in FLRW Cosmology?". Classical and Quantum Gravity. 38 (18): 184001. arXiv:2105.09790. Bibcode:2021CQGra..38r4001K. doi:10.1088/1361-6382/ac1a81. ISSN 0264-9381. S2CID 234790314.
  12. ^ Asta Heinesen; Hayley J. Macpherson (15 July 2021). "Luminosity distance and anisotropic sky-sampling at low redshifts: A numerical relativity study". Physical Review D. 104 (2): 023525. arXiv:2103.11918. Bibcode:2021PhRvD.104b3525M. doi:10.1103/PhysRevD.104.023525. S2CID 232307363. Retrieved 25 March 2022.
  13. ^ Jacques Colin; Roya Mohayaee; Mohamed Rameez; Subir Sarkar (20 November 2019). "Evidence for anisotropy of cosmic acceleration". Astronomy and Astrophysics. 631: L13. arXiv:1808.04597. Bibcode:2019A&A...631L..13C. doi:10.1051/0004-6361/201936373. S2CID 208175643. Retrieved 25 March 2022.
  14. ^ Lee Billings (April 15, 2020). "Do We Live in a Lopsided Universe?". Scientific American . Retrieved March 24, 2022.
  15. ^ Migkas, K.; Schellenberger, G.; Reiprich, T. H.; Pacaud, F.; Ramos-Ceja, M. E.; Lovisari, L. (8 April 2020). "Probing cosmic isotropy with a new X-ray galaxy cluster sample through the LX-T scaling relation". Astronomy & Astrophysics. 636 (April 2020): 42. arXiv:2004.03305. Bibcode:2020A&A...636A..15M. doi:10.1051/0004-6361/201936602. S2CID 215238834. Retrieved 24 March 2022.
  16. ^ Nathan J. Secrest; Sebastian von Hausegger; Mohamed Rameez; Roya Mohayaee; Subir Sarkar; Jacques Colin (February 25, 2021). "A Test of the Cosmological Principle with Quasars". The Astrophysical Journal Letters. 908 (2): L51. arXiv:2009.14826. Bibcode:2021ApJ...908L..51S. doi:10.3847/2041-8213/abdd40. S2CID 222066749. Retrieved March 24, 2022.
  17. ^ B. Javanmardi; C. Porciani; P. Kroupa; J. Pflamm-Altenburg (August 27, 2015). "Probing the Isotropy of Cosmic Acceleration Traced By Type Ia Supernovae". The Astrophysical Journal Letters. 810 (1): 47. arXiv:1507.07560. Bibcode:2015ApJ...810...47J. doi:10.1088/0004-637X/810/1/47. S2CID 54958680. Retrieved March 24, 2022.
  18. ^ "Simple but challenging: the Universe according to Planck". ESA Science & Technology. October 5, 2016 [March 21, 2013]. Retrieved October 29, 2016.
  19. ^ Dennis Sciama (12 June 1967). "Peculiar Velocity of the Sun and the Cosmic Microwave Background". Physical Review Letters. 18 (24): 1065–1067. Bibcode:1967PhRvL..18.1065S. doi:10.1103/PhysRevLett.18.1065. Retrieved 25 March 2022.
  20. ^ G. F. R. Ellis; J. E. Baldwin (1 January 1984). "On the expected anisotropy of radio source counts". Monthly Notices of the Royal Astronomical Society. 206 (2): 377–381. doi:10.1093/mnras/206.2.377. Retrieved 25 March 2022.
  21. ^ Siewert, Thilo M.; Schmidt-Rubart, Matthias; Schwarz, Dominik J. (2021). "Cosmic radio dipole: Estimators and frequency dependence". Astronomy & Astrophysics. 653: A9. arXiv:2010.08366. Bibcode:2021A&A...653A...9S. doi:10.1051/0004-6361/202039840. S2CID 223953708.
  22. ^ Secrest, Nathan; von Hausegger, Sebastian; Rameez, Mohamed; Mohayaee, Roya; Sarkar, Subir; Colin, Jacques (25 February 2021). "A Test of the Cosmological Principle with Quasars". The Astrophysical Journal. 908 (2): L51. arXiv:2009.14826. Bibcode:2021ApJ...908L..51S. doi:10.3847/2041-8213/abdd40. ISSN 2041-8213. S2CID 222066749.
  23. ^ Singal, Ashok K. (22 June 2021). "Peculiar motion of Solar system from the Hubble diagram of supernovae Ia and its implications for cosmology". arXiv:2106.11968 [astro-ph.CO].
  24. ^ Singal, Ashok K. (2022). "Solar system peculiar motion from the Hubble diagram of quasars and testing the cosmological principle". Monthly Notices of the Royal Astronomical Society. 511 (2): 1819–1829. arXiv:2107.09390. doi:10.1093/mnras/stac144.
  25. ^ de Oliveira-Costa, Angelica; Tegmark, Max; Zaldarriaga, Matias; Hamilton, Andrew (25 March 2004). "The significance of the largest scale CMB fluctuations in WMAP". Physical Review D. 69 (6): 063516. arXiv:astro-ph/0307282. Bibcode:2004PhRvD..69f3516D. doi:10.1103/PhysRevD.69.063516. ISSN 1550-7998. S2CID 119463060.
  26. ^ Land, Kate; Magueijo, Joao (28 November 2005). "Is the Universe odd?". Physical Review D. 72 (10): 101302. arXiv:astro-ph/0507289. Bibcode:2005PhRvD..72j1302L. doi:10.1103/PhysRevD.72.101302. ISSN 1550-7998. S2CID 119333704.
  27. ^ Kim, Jaiseung; Naselsky, Pavel (10 May 2010). "Anomalous parity asymmetry of the Wilkinson Microwave Anisotropy Probe power spectrum data at low multipoles". The Astrophysical Journal. 714 (2): L265–L267. arXiv:1001.4613. Bibcode:2010ApJ...714L.265K. doi:10.1088/2041-8205/714/2/L265. ISSN 2041-8205. S2CID 24389919.
  28. ^ Hutsemekers, D.; Cabanac, R.; Lamy, H.; Sluse, D. (October 2005). "Mapping extreme-scale alignments of quasar polarization vectors". Astronomy & Astrophysics. 441 (3): 915–930. arXiv:astro-ph/0507274. Bibcode:2005A&A...441..915H. doi:10.1051/0004-6361:20053337. ISSN 0004-6361. S2CID 14626666.
  29. ^ Migkas, K.; Schellenberger, G.; Reiprich, T. H.; Pacaud, F.; Ramos-Ceja, M. E.; Lovisari, L. (April 2020). "Probing cosmic isotropy with a new X-ray galaxy cluster sample through the L X T {\displaystyle L_{\text{X}}-T} scaling relation". Astronomy & Astrophysics. 636: A15. arXiv:2004.03305. Bibcode:2020A&A...636A..15M. doi:10.1051/0004-6361/201936602. ISSN 0004-6361. S2CID 215238834.
  30. ^ Migkas, K.; Pacaud, F.; Schellenberger, G.; Erler, J.; Nguyen-Dang, N. T.; Reiprich, T. H.; Ramos-Ceja, M. E.; Lovisari, L. (May 2021). "Cosmological implications of the anisotropy of ten galaxy cluster scaling relations". Astronomy & Astrophysics. 649: A151. arXiv:2103.13904. Bibcode:2021A&A...649A.151M. doi:10.1051/0004-6361/202140296. ISSN 0004-6361. S2CID 232352604.
  31. ^ Krishnan, Chethan; Mohayaee, Roya; Colgáin, Eoin Ó; Sheikh-Jabbari, M. M.; Yin, Lu (2022). "Hints of FLRW breakdown from supernovae". Physical Review D. 105 (6): 063514. arXiv:2106.02532. Bibcode:2022PhRvD.105f3514K. doi:10.1103/PhysRevD.105.063514. S2CID 235352881.
  32. ^ Luongo, Orlando; Muccino, Marco; Colgáin, Eoin Ó; Sheikh-Jabbari, M. M.; Yin, Lu (30 August 2021). "On Larger $H_0$ Values in the CMB Dipole Direction". arXiv:2108.13228 [astro-ph.CO].
  33. ^ Saadeh D, Feeney SM, Pontzen A, Peiris HV, McEwen, JD (2016). "How Isotropic is the Universe?". Physical Review Letters. 117 (13): 131302. arXiv:1605.07178. Bibcode:2016PhRvL.117m1302S. doi:10.1103/PhysRevLett.117.131302. PMID 27715088. S2CID 453412.
  34. ^ Gott, J. Richard, III; et al. (May 2005). "A Map of the Universe". The Astrophysical Journal. 624 (2): 463–484. arXiv:astro-ph/0310571. Bibcode:2005ApJ...624..463G. doi:10.1086/428890. S2CID 9654355.
  35. ^ Horvath, I.; Hakkila, J.; Bagoly, Z. (2013). "The largest structure of the Universe, defined by Gamma-Ray Bursts". arXiv:1311.1104 [astro-ph.CO].
  36. ^ "Line of galaxies is so big it breaks our understanding of the universe".
  37. ^ Nadathur, Seshadri (2013). "Seeing patterns in noise: gigaparsec-scale 'structures' that do not violate homogeneity". Monthly Notices of the Royal Astronomical Society. 434 (1): 398–406. arXiv:1306.1700. Bibcode:2013MNRAS.434..398N. doi:10.1093/mnras/stt1028. S2CID 119220579.
  38. ^ Hoyle, F.; Burbidge, G.; Narlikar, J. V. (1993). "A quasi-steady state cosmological model with creation of matter". The Astrophysical Journal. 410: 437–457. Bibcode:1993ApJ...410..437H. doi:10.1086/172761.
    Hoyle, F.; Burbidge, G.; Narlikar, J. V. (1994). "Astrophysical deductions from the quasi-steady state cosmology". Monthly Notices of the Royal Astronomical Society. 267 (4): 1007–1019. Bibcode:1994MNRAS.267.1007H. doi:10.1093/mnras/267.4.1007. hdl:11007/1133.
    Hoyle, F.; Burbidge, G.; Narlikar, J. V. (1994). "Astrophysical deductions from the quasi-steady state : Erratum". Monthly Notices of the Royal Astronomical Society. 269 (4): 1152. Bibcode:1994MNRAS.269.1152H. doi:10.1093/mnras/269.4.1152.
    Hoyle, F.; Burbidge, G.; Narlikar, J. V. (1994). "Further astrophysical quantities expected in a quasi-steady state Universe". Astronomy and Astrophysics. 289 (3): 729–739. Bibcode:1994A&A...289..729H.
    Hoyle, F.; Burbidge, G.; Narlikar, J. V. (1995). "The basic theory underlying the quasi-steady state cosmological model". Proceedings of the Royal Society A. 448 (1933): 191. Bibcode:1995RSPSA.448..191H. doi:10.1098/rspa.1995.0012. S2CID 53449963.
  39. ^ Narlikar, J. V.; Vishwakarma, R. G.; Burbidge, G. (2002). "Interpretations of the Accelerating Universe". Publications of the Astronomical Society of the Pacific. 114 (800): 1092–1096. arXiv:astro-ph/0205064. Bibcode:2002PASP..114.1092N. doi:10.1086/342374. S2CID 15456774.
  40. ^ Hoyle, F. (1993). "Light element synthesis in Planck fireballs". Astrophysics and Space Science. 198 (2): 177–193. doi:10.1007/BF00644753. S2CID 121245869.
  41. ^ Wright, E. L. (1994). "Comments on the Quasi-Steady-State Cosmology". Monthly Notices of the Royal Astronomical Society. 276 (4): 1421. arXiv:astro-ph/9410070. Bibcode:1995MNRAS.276.1421W. doi:10.1093/mnras/276.4.1421. S2CID 118904109.
  42. ^ Hoyle, F.; Burbidge, G.; Narlikar, J. V. (1994). "Note on a Comment by Edward L. Wright". arXiv:astro-ph/9412045.
  43. ^ Wright, E. L. (20 December 2010). "Errors in the Steady State and Quasi-SS Models". UCLA, Physics & Astronomy Department.

Further reading [edit]

  • Burbidge, G., Hoyle, F., "The Origin of Helium and the Other Light Elements", The Astrophysical Journal, 509:L1–L3, 10 December 1998
  • Hoyle, F.; Burbidge, G.; Narlikar, J. V. (2000). A Different Approach to Cosmology. Cambridge University Press. ISBN978-0-521-66223-9.
  • Mitton, S. (2005). Conflict in the Cosmos: Fred Hoyle's Life in Science. Joseph Henry Press. ISBN978-0-309-09313-2.
  • Mitton, S. (2005). Fred Hoyle: A Life in Science. Aurum Press. ISBN978-1-85410-961-3.
  • Narlikar, Jayant; Burbidge, Geoffrey (2008). Facts and Speculations in Cosmology. Cambridge University Press. ISBN978-0521865043.

kapplarm1946.blogspot.com

Source: https://en.wikipedia.org/wiki/Steady-state_model

0 Response to "The Theory States That the Universe is Continually Growing"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel